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Abstract: 
A modelling system, based on WRF and FARM chemical-transport model (CTM), has been used to perform three 
years (2013-2015), high-resolution (5x5 km), simulations over Italy of air pollution and meteorological parameters to 
be used to estimate exposure for national epidemiological applications. WRF model has been applied over two nested 
domains, covering Europe and Italy, while FARM has been applied over the Italian domain only. Air quality 
simulations have been performed using the meteorological fields provided by WRF simulations, chemical boundary 
conditions from the QualeAria forecast system and emission data from national and European inventories. A 
statistical analysis comparing modelling results against routine monitoring network data has been carried out to 
evaluate the simulation performance, indicating an acceptable model performance and confirming the suitability of 
models’ results for the epidemiological investigations foreseen in the BEEP project. To improve the spatial 
distribution of airborne pollutants maps, the modelled concentration fields have been further integrated with the 
available observations using the Optimal Interpolation method. 
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INTRODUCTION 
Air pollution, especially particulate matter (PM), is one of the major threats to human health. Recently, 
the World Health Organization estimated around 4.2 million of premature deaths attributable to air 
pollution exposure worldwide (WHO, 2018). Similarly, air temperature is projected to increase due to 
global warming, with adverse consequences to human health and the ecosystem (IPCC, 2018). During the 
last decades, many epidemiological studies reported consistent health effects of PM and air temperature 
related to both short-term (i.e. daily peaks) and long-term (i.e. chronical) exposures. These studies have 
been mainly conducted in major cities, where larger populations live and more evidence on the health 
effects of air pollution is available. In such places, denser monitoring networks provide a basis on which 



to describe the spatiotemporal pollutants variability, as can be done through the application of Land Use 
Regression (LUR) models (Stafoggia et al., 2013). Otherwise in smaller cities, sub-urban and rural areas, 
where observations are often insufficient, meteorological models and CTMs can effectively provide high 
spatial (down to about one km) and temporal (hourly) resolution data to investigate the health effects of 
air quality and meteorology on the population living in these areas. To estimate such effects on the Italian 
population, the National Institute for Insurance against Accidents at Work (INAIL) has funded the BEEP 
project (Big Data in Environmental and Occupational Epidemiology) which, among other objectives, 
planned the reconstruction of three years (2013-2015) of daily maps of air pollutants concentration and air 
temperature over Italy to support epidemiological investigations. Data fusion methods, that combine 
information from air quality monitoring networks with other sources such as reanalysis data, satellite 
data, and data sets obtained from statistical models or CTMs, have been used to improve the air quality 
assessment and consequently to reduce uncertainty in exposure estimates (Denby et al., 2009; Physick et 
al., 2007). In this work, we have used the Optimal Interpolation (OI) method to combine modelling 
results and observations. The modelling system used in this project and the obtained results are described 
in the next sections.  

MODELLING SYSTEM DESCRIPTION 
The adopted modelling system is based on FARM (Silibello et al., 2014) and on meteorology, emission 
and boundary-condition modules. The meteorology module is made up by WRF prognostic non-
hydrostatic model and an interface module that calculates further information required by FARM (i.e. 
gas-phase species deposition velocities, horizontal and vertical diffusivities, natural emissions of aerosols 

– sea salts and soil dust driven by surface wind - and trace species 
from vegetation) as function of meteorological parameters (i.e. 
wind speed, solar radiation, temperature) and geographic 
environment characteristics (i.e. soil type and land coverage). 
ECMWF ERA5 reanalyses have been used to drive WRF 
simulations that have been performed over two nested domains, 
covering Europe and Italy at 25 and 5 km resolution respectively. 
To improve the meteorological fields over the target domain, the 
observation nudging data assimilation scheme implemented in 
WRF has been applied using METAR, ship and buoy observations 
from NCEP/MADIS archives (an example of the spatial 
distribution of such observations for the year 2015 is given in 
Figure 1). The emission module generates hourly emissions at 
every cell of the Italian domain, by disaggregating ISPRA Italian 
national inventory and TNO inventory for the surrounding 
countries. Different temporal activity profiles (daily, weekly and 

yearly time modulations), and gridded spatial proxies have been used to disaggregate in time and space 
the emission inventories data. Activity-related speciation profiles have been used to split NMVOC and 
PM inventories emissions according to the chemical mechanism (SAPRC99, Carter, 2000) and the 
aerosol module (aero3, Binkowski and Roselle, 2003) implemented in FARM. Boundary conditions for 
the Italian grid have been supplied by QualeAria system (www.qualearia.it), that provides air quality 
forecasts over the Italian peninsula downscaling synoptic scale weather and chemical forecasts from US 
National Center for Environmental Prediction (NCEP) and Copernicus Atmosphere Monitoring Service 
(CAMS). 

SIMULATION RESULTS 
The modelling system has been used to compute daily maps of PM10, PM2.5, NO2 and O3 levels over Italy 
along three years (2013-2015). The capability of the system to capture the spatiotemporal distribution of 
airborne pollutants has been assessed through a comparison with monitoring network data and the use of 
following statistical indicators (Table 1): the fraction of predictions within a factor of two of observations 
(FAC2) and the Index of Agreement (IA, Willmott, 1981). The analysis of the table evidences 
‘acceptable’ model performance values for the considered pollutants: FAC2 > 60% and IA > 0.5 are 
generally considered to be a good result. Figure 2 shows scatterplots of average computed concentrations 
versus observed ones for the year 2015 for background monitoring sites located in northern, central and 

 

 
Figure 1. Monitoring sites used by 
WRF observation nudging scheme 



southern Italy. Traffic stations are not included in the analysis due to the horizontal resolution of the 
predicted fields that does not permit to capture the local phenomena induced by nearby road traffic 
emissions. As shown in Figure 2, the stations are not uniformly distributed across the country, with a 
larger number of monitoring sites in the northern portion of the territory. The analysis of scatterplots 
evidences better results in the northern portion of the country, with calculated values generally within a 
factor of two of observations. A good agreement has been obtained for PM10, PM2.5 and O3, while NO2 
scatterplots evidences a more significant underestimation of observed levels at monitoring stations 
located in central and southern Italy. This result could be linked to higher uncertainties in emission data 
for these regions, but also to a general prevalence of a combination of smaller populated areas and a 
hilly/mountainous terrain, not fully resolved at the adopted model resolution. 

 
Table 1. Model evaluation of PM10, NO2 and ozone predictions [µg m-3] over Italy; FAC2: percentage of predictions 

within a factor of two of observations; IA: Index of Agreement (IA∈[0,1], with 1 indicating the best agreement). 
 

Pollutant year No. of sites Mean 
Obs. 

Mean 
Pred. IA FAC2 

 
PM10 

 

2013 449 26.1 16.5 0.7 57.5 

2014 466 24.3 15.4 0.6 58.6 

2015 449 27.1 16.4 0.7 52.5 

 
PM2.5 

 

2013 191 17.8 14.6 0.8 69.1 

2014 217 15.9 13.5 0.8 70.1 

2015 228 18.71 14.6 0.8 65.4 

 
NO2 

2013 518 26.9 15.5 0.7 51.8 

2014 526 24.6 15.6 0.7 56.2 

2015 537 25.8 15.4 0.7 51.5 

 
O3 

2013 289 54.3 56.4 0.8 86.8 

2014 300 52.4 56.6 0.9 87.0 

2015 283 56.9 64.9 0.9 84.9 

 
 
To improve the concentration fields provided by the modelling system, we have then combined them with 
monitoring data, applying the OI algorithm. This method gives the best estimate of the chemical state of 
the atmosphere provided that suitable values are used for the scale parameters defining the influence of 
the observation along the horizontal and vertical directions (Lh and Lz). We have used the approach 
described in Silibello et al. (2014) to identify the values of these parameters to be used for the pollutants 
considered in this work. As for Lh we have considered values of 20, 30, 40, 50 km and 300, 500, 700 and 
1000 m for Lz. For each combination of them, we performed the analysis and calculated the RMSE at 
each monitoring station, excluding its observations from the OI calculations (“leave-one-out cross 
validation”). Once identified the combination of Lh and Lz values (Table 2) that minimizes RMSE, we 
have then applied the OI method to the daily computed concentration fields for the three years.  
 

Table 2. Values of Lh [km] and Lz [m] for PM10, PM2.5, NO2 ed O3.  
 

PM10 PM2.5 NO2 O3 
Lh Lz Lh Lz Lh Lz Lh Lz 
20 1000 30 1000 40 1000 50 1000 

 
Figure 3 reports, for the year 2015, FARM and OI yearly averaged concentration fields except for ozone, 
for which we have considered summer averages (June-August). Significant differences between FARM 
and OI maps were evidenced for NO2, in central and southern Italy coherently with previous scatterplot 
analysis. As for PM10 and PM2.5 the introduction of observations leads to higher levels along the 



Apennine ridge (central Italy), while for ozone higher concentration were estimated in the North, along to 
eastern Alps. 

CONCLUSION AND FUTURE WORK 
In this work we presented the results obtained by the application of meteorological and chemical-
transport models over Italy for three years considering a high spatial resolution (5 km). A good agreement 
between predicted and observed concentrations has been obtained for PM10, PM2.5 and O3. As for NO2, a 
significant underestimation of observed levels was evidenced at central and southern Italy monitoring 
stations that could be ascribable to uncertainties in NOX emission data for these areas. To improve the air 
quality assessment and to reduce uncertainty in foreseen exposure estimates consequently, the Optimal 
Interpolation method has been used to integrate the estimated concentration fields with the available 
observation data. The “data fused” maps evidence, with respect to CTM results, a general increase of 
yearly NO2 levels in central and southern Italy, higher PM10 and PM2.5 levels along the Apennine ridge 
and higher ozone concentration along eastern Alps. Ongoing work concerns the application of machine 
learning methods, specifically the Random Forest (similarly to the approach described in Stafoggia et al., 
2019), to produce NO2 and O3 higher resolution maps (1 km) over Italy.  
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Figure 2. Yearly averaged (2015) PM10, NO2 and O3 computed vs observed concentration scatterplots over Northern 
(green), Central (yellow) and Southern (red) Italy (between parenthesis the number of stations) 
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Figure 3. Yearly (PM10, PM2.5 and NO2) and summer (JJA, O3) levels over Italy, for the year 2015, computed by 
FARM (top) and OI algorithm (bottom) 
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